Problem 2

A student forgot the Product Rule for differentiation and made the mistake of thinking that $(f g)^{\prime}=f^{\prime} g^{\prime}$. However, he was lucky and got the correct answer. The function f that he used was $f(x)=e^{x^{2}}$ and the domain of his problem was the interval $\left(\frac{1}{2}, \infty\right)$. What was the function g ?

Solution

The Product Rule says that

$$
(f g)^{\prime}=f^{\prime} g+g^{\prime} f
$$

Since the student got the correct answer, it must be the case that

$$
\begin{equation*}
f^{\prime} g+g^{\prime} f=f^{\prime} g^{\prime} \tag{1}
\end{equation*}
$$

and because we know f (and consequently f^{\prime}), this will be a differential equation for g that we can solve.

$$
f(x)=e^{x^{2}} \quad \rightarrow \quad f^{\prime}(x)=e^{x^{2}} \cdot 2 x
$$

Plugging these functions into (1) yields the following:

$$
\begin{aligned}
2 x e^{x^{2}} g+g^{\prime} e^{x^{2}} & =2 x e^{x^{2}} g^{\prime} \\
2 x g & =(2 x-1) g^{\prime} \\
(2 x-1) g^{\prime} & =2 x g
\end{aligned}
$$

Separate variables.

$$
\begin{aligned}
(2 x-1) \frac{d g}{d x} & =2 x g \\
\frac{d g}{g} & =\frac{2 x}{2 x-1} d x
\end{aligned}
$$

Integrate both sides.

$$
\ln |g|=\int \frac{2 x}{2 x-1} d x
$$

To solve the integral on the right, make the u-subtitution

$$
\begin{aligned}
u & =2 x-1 \quad \rightarrow \quad u+1=2 x \\
d u & =2 d x \quad \rightarrow \quad \frac{1}{2} d u=d x .
\end{aligned}
$$

And so

$$
\begin{aligned}
& \ln |g|=\frac{1}{2} \int \frac{(u+1)}{u} d u \\
& \ln |g|=\frac{1}{2} \int\left(1+\frac{1}{u}\right) d u \\
& \ln |g|=\frac{1}{2}(u+\ln |u|)+C
\end{aligned}
$$

Exponentiate both sides.

$$
|g(x)|=e^{\frac{1}{2}(2 x-1+\ln |2 x-1|)} e^{C}
$$

Because the domain is $\left(\frac{1}{2}, \infty\right)$, the absolute value signs around $2 x-1$ can be dropped.

$$
\begin{aligned}
& g(x)= \pm e^{C} e^{x-\frac{1}{2}+\ln (2 x-1)^{1 / 2}} \\
& g(x)=A e^{x-\frac{1}{2}} \sqrt{2 x-1}
\end{aligned}
$$

Therefore, the function the student worked with is

$$
g(x)=A e^{x-\frac{1}{2}} \sqrt{2 x-1} .
$$

